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Abstract We discuss several different directed walk models of a homopolymer
adsorbing at a surface when the polymer is subject to an elongational force which
hinders the adsorption. These models have the advantage that, within the generating
function approach, they can often be solved exactly and that in the stretching regime
they give a fair representation of the configurational properties of the polymer. By
using combinatorial arguments we analyse how the critical temperature for adsorp-
tion depends on the magnitude of the applied force and show that the order of the
adsorption transition changes from continuous to first order when a force is applied.
We discuss which are the minimal ingredients to add into the model in order to obtain
a reentrant phase diagram similar to the one observed in models of DNA mechanical
denaturation. Another advantage in using directed walk models is that they can be
generalized to study, to some extent, the adsorption transition of random copolymers.
Indeed, despite the fact that the quenched model cannot be solved exactly we show
that a partial knowledge of the full random problem can be obtained by resorting to an
approximation in which the quenched average is approximated by a partial annealing
procedure, the so-called Morita approximation.
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1 Introduction

In recent years, the mechanical properties of individual polymers and filaments have
thoroughly been investigated experimentally [1,2], thanks to the rapid development
of micromanipulation techniques such as optical tweezers [3,4] and atomic force
microscopy (AFM) [5,6]. Experiments such as the stretching of single DNA polymers
or the force-induced desorption from an attractive surface enhance the possibility of
understanding the physical properties of the single molecule. Moreover the underlying
physical systems are simple enough to be fairly described by theoretical models that,
to some extent, can be solved analytically or explored numerically. This is the case, for
example, of the mechanical denaturation of duplex DNA [7] for which the temperature
dependence of the critical force fc(T ) required for unzipping has been studied for a
variety of models and the phase diagram has been derived in the ( fc, T )-plane using
exactly solvable models, scaling arguments and numerical approaches [8–11].

A simpler situation which is amenable to theoretical treatment, and which could
also be investigated experimentally by micromanipulation techniques, is the mechan-
ical desorption of a polymer from an attracting surface. One can think of a linear
polymer molecule attached at one end to an impenetrable surface at which the poly-
mer can adsorb (i.e., there is an attractive interaction between the monomers and the
surface). In addition, a force is applied to the other end of the polymer in a direction
perpendicular to the surface. This applied force favours desorption and one expects a
critical force, fc(T ), for desorption which depends on the temperature T . At fixed T ,
if the force is less than fc(T ) the polymer will be adsorbed, while if the force is larger
than fc(T ) the polymer will be desorbed. Hence the critical force curve fc(T ) can be
regarded as a phase boundary in the (T, f )-plane.

The mechanical desorption of a polymer from an attractive surface can be seen as
a generalization of polymer adsorption, a problem whose statistical mechanics has
been studied extensively in the last decades [12] (see also [13,14] for reviews). In this
respect the generating function methods applied on directed walk models have proved
very useful in investigating analytically the equilibrium phase diagram of the polymer
adsorption problem [15–18].

Here we follow this approach by modelling the polymer by a directed walk either in
two dimensions with the surface being a line or in three dimensions where the surface
is modelled by a plane. First, we consider two different classes of directed walks in
two dimensions, related to Dyck paths (Sect. 2) and to Motzkin paths (Sect. 3), and use
combinatorial methods to derive the form of the generating function for each model.
By looking at the singularity structure of the generating functions [19] we derive the
form of the phase diagram and discuss the nature of the adsorption transition both with
and without an applied force [20]. We show that the transition changes from being
continuous to first order when a force is applied. We then consider a partially directed
model in three dimensions and show that this model exhibits a reentrant phase diagram
(Sect. 4). A sufficient condition for the re-entrance can be given by a simple argument
valid in the low temperature limit (see Sect. 5). In Sect. 6 we show how the above
approach can be generalized to the case of adsorption of random copolymers subject
to a force. The final Section is devoted to conclusions and discussions.
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2 Adsorption at an impenetrable surface: a Dyck path model

The simplest model of the conformation of a polymer interacting with an impenetrable
surface is a Dyck path. Consider the square lattice, Z2, i.e. the integer lattice in Euclid-
ean-2-space. We attach a coordinate system (x1, x2) where x1 and x2 are integers and
we define x2 = 0 as the line at which adsorption can occur. A Dyck path is a directed
walk on Z2 which obeys the following constraints:

1. The walk starts at the origin and all vertices have non-negative x2 coordinates.
2. The possible steps are (1,±1).
3. The last vertex of the walk has zero x2 coordinate.

If we write dn for the number of distinct Dick paths with n edges and adopt the
convection that d0 = 1, then d2 = 1, d4 = 2, d6 = 5, etc. (see Fig. 1). Let us define
the generating function of the numbers of Dyck paths as

D(z) =
∑

n

dnzn (1)

where z is conjugate to the number of edges, n. Clearly a Dyck path can be made by a
single vertex. On the other hand a generic Dyck path with n > 0 is a path that leaves
the line x2 = 0, behaves as a translated (at x2 = 1) Dyck path, return to x2 = 0 and
can be completed by adding another Dyck path. This factorization argument gives the
recurrence relation

n=0

n=4

n=6

n=2

Fig. 1 Examples of Dyck paths for the smallest values of n
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Fig. 2 The factorization property of the generating function D(x, z)

D(z) = 1 + z2 D(z)2. (2)

This gives

D(z) = 1 + √
1 − 4z2

2z2 (3)

showing that D(z) has a singularity on the positive real axis at z = 1/2 which corre-
sponds to the fact that limn→∞ d1/n

n = 2. In other words there are about 2n Dick paths
with n edges, for sufficiently large n. Dyck paths can be easily modified to produce
a simple model of polymer adsorption at an impenetrable surface. This can be done
by partitioning Dyck paths according to their number of vertices having x2 = 0. Let
dn(v) be the number of Dick paths with n edges having v + 1 vertices in the line
x2 = 0. We say that the walk visits the adsorbing line v times (one vertex is the origin
and does not count), or that it has v visits. By using the factorization argument of
Fig. 2, the corresponding generating function

D(x, z) =
∑

v,n

dn(v)xvzn (4)

it is shown to satisfy the equation [20]

D(x, z) = 1 + xz2 D(1, z)D(x, z). (5)

Since D(1, z) = D(z) Eq. 5 gives

D(x, z) = 2

2 − x(1 − √
1 − 4z2)

. (6)

The generating function (6) has a square root singularity at z1 = 1/2 and a pole at
z = z2(x) corresponding to a zero of the denominator. These two singularities meet at
x = xc. For x < xc the dominant singularity zd is z1 and the walk is in the desorbed
phase. For x > xc zd = z2(x) and the walk is in the adsorbed phase. The value
x = xc for which z1 = z2(xc) gives the adsorption transition point for Dyck paths.
To introduce the temperature parameter explicitly into the description the substitution

x = e−ε/kB T (7)
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Fig. 3 Temperature dependence of the free energy for adsorbing walks related to Dyck paths. The circle
encloses the location of the adsorption point at T = Tc = 1/ log 2

is considered. Without loss of generality we will work in units where kB = 1 and set
ε = −1 so that x = e1/T . Figure 3 shows the limiting free energy F(T ) = − log zd(T )

as a function of T for the adsorption problem in the Dyck path description. As expected,
F(T ) is a convex function of T that is constant for T > Tc = 1/ log(xc) = 1/ log 2
and increases as T decreases for T < Tc. The density of visits, ρ(T ), is then simply
given by the first derivative of F(T ) and its behaviour is shown in Fig. 4. As expected,
for T > Tc (desorbed phase) the fraction of visits is zero whereas for T < Tc (adsorbed
phase) ρ(T ) increases as T decreases reaching its limiting value 1/2 as T → 0. Note
that the value 1/2 reflects the fact that for Dyck paths only half of the vertices may,
at most, lie on the x2 = 0 line. From Fig. 4 it is also clear that the adsorption tran-
sition is at least a second order phase transition. Finally one can also calculate the
value of the crossover exponent φ describing the behaviour of F(T ) as T → T −

c
[19]

F(T ) − F(Tc) ∼ (T − Tc)
1/φ. (8)

A straightforward calculation shows that for adsorbing Dyck paths φ = 1/2.
In order to take into account the effect of an elongational force applied at one extrem-

ity of the polymer the above model must be slightly modified as follows. The constraint
of the walk ending at x2 = 0 is relaxed and the Dyck path model is generalized to the
one in which paths can have their final vertex at an arbitrary x2 = h (see Fig. 5 for an
example). Clearly the pure Dyck path model corresponds to the special case h = 0.
Suppose that the number of such n-edge walks with v + 1 vertices in x2 = 0, hav-
ing their last vertex with x2-coordinate equal to h, is bn(v, h). Define the generating
function
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Fig. 4 Temperature dependence of the density of visits for adsorbing walks related to Dyck paths

B(x, y, z) =
∑

v,h,n

bn(v, h)xv yhzn . (9)

Using a factorization argument similar to the one shown in Fig. 2 we get

B(x, y, z) = D(x, z)[1 + yzB(1, y, z)]. (10)

By putting x = 1 Eq. 10 can be solved for B(1, y, z) and we obtain the final result
[20]

B(x, y, z) = 4z

(2 − x + x
√

1 − 4z2)(2z − y + y
√

1 − 4z2)
. (11)

This generating function has a square root singularity when z = 1/2 and two other
singularities when 2 − x + x

√
1 − 4z2 = 0 and when 2z − y + y

√
1 − 4z2 = 0. The

square root singularity corresponds to the desorbed phase. The adsorption is controlled
by whichever of the other two singularities is closest to the origin. We therefore solve
each of these two equations for z to find two critical surfaces

z(1)
c (y) = y

y2 + 1
(12)

and

z(2)
c (x) =

√
x − 1

x
. (13)
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h

Fig. 5 Example of a Dyck path with n = 8 edges, v = 2 visits and the last vertex with x2 = 2

T

0,4 1,210,80 0,2
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0
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DESORBED

ADSORBED

B

A

Fig. 6 Force–temperature phase diagram for adsorbing walks related to Dyck paths. Line A and line B
represent, respectively, the directions along which we cross the mechanical desorption curve in the next
figures

Note that one singularity depends on x and the other on y. The phase boundary in
the (x, y)-plane is determined by the condition that z(1)

c (y) = z(2)
c (x) which gives

yc(x) = √
x − 1. To map the problem into the force–temperature plane we consider

y = e f/T and x = e1/T where T is still the temperature and f is the applied force.
This choice of y is equivalent to setting the value of h equal to zero when there is no
applied force and this is justified because the limiting free energy with no force, at
constant h, is independent of h for any finite h. With these substitutions we can plot
the phase diagram in the (T, f )-plane as shown in Fig. 6.

For f = 0 we have the pure adsorption problem (see Eq. 6) with the adsorption
point at Tc(0) = 1/ log 2. Note that the critical force is a monotonically decreas-
ing function of temperature and that, as T → 0+ f → 1/2 with zero slope. This
again reflects the fact that at most half of the vertices can be in the line x2 = 0 for
Dyck paths. It is interesting to explore the equilibrium properties of the model as we
cross the critical line fc(T ), say for example, at f = T log 2 and f = T log 1.5.
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Fig. 7 Temperature dependence of the free energy as we cross the critical force along the lines f = T log 2
(A, solid curve) and f = T log 1.5 (B, dashed line)

Figure 7 shows the limiting free energy as a function of T for these cases. At first sight
the free energy functions for f > 0 look similar to one with no applied force (see Fig.
3), the only difference being the shift of the transition point towards lower values of
T . This is reasonable since the force tends to desorb the polymer. If on the other hand

1,61,20,80,4

0,6

0,5

0,4

0,3

0,2

0,1

0

T

2

A B

Fig. 8 Temperature dependence of the density of visits as we cross the critical force curve along the lines
f = T log 2 (A) and f = T log 1.5 (B). The density gap at the mechanical desorption transition decreases
as f decreases
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Fig. 9 Density gap at the adsorption transition point as a function of the critical force fc

one looks at the temperature behaviour of the limiting density of visits an important
difference with respect to the f = 0 case is observed since ρ(T ) is not any more a
continuous function of T but presents a finite discontinuity at T = Tc( f ) (see Fig. 8).
This discontinuity is present for any value of f > 0 and is a clear evidence that the
imposition of an elongation force changes the nature of the adsorption transition from
continuous to first order. The size of the discontinuity depends on f and increases as
the critical force increases (see Fig. 9). As expected for f = 0 the gap is zero since
the transition is continuous.

3 Walks related to Motzkin paths

Dyck paths have the disadvantage that only alternate vertices can lie in the line x2 = 0.
Motzkin paths (which differ from Dyck paths by having three kinds of possible step
directions (1,±1) and (1, 0)) do not have this disadvantage since they can lie entirely
in the line x2 = 0. If we write mn for the number of Motzkin paths with n edges then
m1 = 1, m2 = 2, m3 = 4 and so on (see Fig. 10). Let

M(z) = 1 +
∑

n≥1

mnzn (14)

be the generating function of the numbers of Motzkin paths, where z is conjugate
to the number of edges, n. By a factorization argument (similar to the one for Dyck
paths), M(z) satisfies the equation

M(z) = (1 + z + z2 + · · · )
[
1 + z2 M(z)2

]
= 1

1 − z

[
1 + z2 M(z)2

]
(15)
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n=0 n=1

n=2

n=3

Fig. 10 Examples of Motzkin paths for the smallest values of n

so that

M(z) = 1 − z − √
1 − 2z − 3z2

2z2 . (16)

M(z) has a singularity on the positive real axis at z = 1/3 which corresponds to the fact
that, for sufficiently large n, there are about 3n Motzkin paths, i.e. limn→∞ m1/n

n = 3.
Similarly to adsorbing Dyck paths we define mn(v) to be the number of Motzkin paths
with n edges and v + 1 visits. A similar factorization argument to that leading to (6)
implies that the generating function

M(x, z) =
∑

v,n

mn(v)xvzn (17)
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satisfies the relation

M(x, z) = (1 + xz + x2z2 + · · · )(1 + xz2 M(1, z)M(x, z))

= 1 + xz2 M(1, z)M(x, z)

1 − xz
. (18)

Since M(1, z) = M(z) we finally get

M(x, z) = 1

1 − zx − 1
2 x(−z + 1 − √−3z2 − 2z + 1)

. (19)

By exploiting the singularity structure of (19) one confirms the scenario found for
adsorbing Dyck paths, namely an adsorption transition (at xc = 3/2) between a
desorbed phase where the fraction of visits is zero and an adsorbed phase where this
fraction is positive. Similarly to Dyck paths the transition is continuous with a cross-
over exponent φ = 1/2. The main difference with respect to Dyck paths is that, in the
ground state limit (i.e. T → 0+), the fraction of visits tends to 1. This reflects the fact
that there exists a Motzkin path with all vertices lying in the line x2 = 0. By relaxing
the condition that the last vertex has zero x2 coordinate we can generalize the Moztkin
path description for adsorbing walks to include the action of an elongational force.
Similarly to Dyck paths we define cn(v, h) as the number of Motzkin paths with n
edges, v + 1 vertices in x2 = 0, and whose last vertex has x2-coordinate equal to h.
Again, a factorization argument shows that the corresponding generating function

C(x, y, z) =
∑

v,h,n

cn(v, h)xv yhzn (20)

satisfies the relation

C(x, y, z) = M(x, z)[1 + yzC(1, y, z)]. (21)

By solving Eq. 21 first for C(1, y, z) (knowing M(x, z) from (19)) we get

C(x, y, z) = 4z

(2 − zx − x + xu)(2z + yz − y + yu)
(22)

where u = √
1 − 2z − 3z2. This expression for C(x, y, z) has a square root singular-

ity zd = z1 = 1/3 corresponding to the desorbed phase, and two singularities where
the denominator is zero. Proceeding as for Dyck paths, we look for the values of x
and y where the two singularities coincide and this gives the phase boundary in the
(x, y)-plane. Making the substitutions y = e f/T and x = e1/T we get the phase
diagram in the ( f, T )-plane shown in Fig. 11 [20]. As for Dyck paths the force is a
monotone-decreasing function of the the temperature and, for T → 0, f → 1 with
zero slope. This is different from the limiting value 1/2 found for Dyck paths. This
again reflects the fact that while Dyck paths can have at most half of the vertices in
the line x2 = 0, there exist a Motzkin path with all the vertices on that line. Again,
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Fig. 11 Force–temperature phase diagram for walks related to Motzkin paths (solid line). The thinner
(bottom) line is the corresponding phase diagram for Dyck paths (see Fig. 6)

when f > 0 the temperature dependence of the fraction of visits presents a finite
discontinuity at T = Tc( f ) confirming that the nature of the adsorption transition
changes from continuous to first order when a force is applied.

4 Partially directed walks in three dimensions

Both models considered in the previous sections have phase diagrams in which the
force is monotone in the temperature. On the other hand non-monotonic (reentrant)
phase diagrams have been seen in directed models of the mechanical denaturation
of DNA, i.e. DNA denaturation induced by an applied force [10,11]. It is then nat-
ural to look at other directed models that can reproduce similar features also for
the problem of polymer adsorption in presence of an applied force. A successful
candidate turned out to be the partially directed walk model in three dimensions
[20].

The model which we consider is a self-avoiding walk in Z3 with coordinates
(x1, x2, x3) and the following constraints:

1. The walk starts at the origin and is confined to the half-space x3 ≥ 0.
2. The walk has no steps in the negative x1 and negative x2 directions.

In analogy with Dyck and Motzkin paths we first consider the pure adsorption
problem by looking at the subset of partially directed walks having their last vertex
in the plane x3 = 0. If we write gn(v) for the number of such walks with n edges
and with v + 1 vertices in x3 = 0, one can define the corresponding generating
function

G(x, z) =
∑

v,n

gn(v)xvzn . (23)
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A factorization property holds also for partially directed walks giving the recurrence
relation

G(x, z) =(1 + 2xz + 4x2z2 + · · · + 2px pz p + · · · )
×

[
1 + xz2(G(1, z) − 1) + 2x2z3(G(1, z) − 1)G(x, z)

]
(24)

which can be written as

G(x, z) = 1 + (G(1, z) − 1)xz2

1 − 2xz − 2x2z3(G(1, z) − 1)
. (25)

By putting x = 1 in (25) an explicit expression for G(1, z) can be found. This gives

G(1, z) = 2z3 − z2 − 2z + 1 − q

4z3 (26)

where

q =
√

(2z3 − z2 − 2z + 1)2 − 8z3(1 − z2). (27)

G(x, z) is then obtained by plugging expression (26) back to Eq. 25. Clearly G(x, z)
has a square root singularity given by q = 0, i.e.

z1 =
(√

17 − 3
)

/4. (28)

In addition G has a set of singularities, z2(x), corresponding to its denominator being
zero i.e. when

2 − x2 − 4xz + 2x2z + x2z2 + 2x2z3 + x2q = 0. (29)

Equation (29) is a quartic equation whose solutions, that can be found explicitly, are too
cumbersome to be reported here. On the other hand by solving the equation z2(x) = z1
with respect to x , i.e. by looking at the point at which the two singularities coalesce
one obtains

(xc, z(xc)) =
(

3 − 3
√

3 + √
17(

√
3 − 1)

13 − 3
√

17
,

√
17 − 3

4

)

= (1.3036 . . . , 0.2807 . . .). (30)

This corresponds to the location of the adsorption transition for partially directed walks
in the absence of an applied force.

In order to include a force term we allow the walks to have their last vertex with
x3-coordinate not equal to zero. Let wn(v, h) be the number of such walks with n
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edges, v + 1 vertices in x3 = 0 and with the x3-coordinate of the last vertex equal to
h. Define the generating function

W (x, y, z) =
∑

v,h,n

wn(v, h)xv yhzn . (31)

In order to compute W it is convenient to consider the subset of walks contributing to
G characterized by having their last edge in the plane x3 = 0. We define Q(x, z) to be
the generating function of this subset. Then by a factorization argument we can write

Q(x, z) = (1 + 2xz + · · · + 2px pz p + · · · )
(

1 + 2x2zL(z)Q(x, z)
)

(32)

where L(z) = z2[G(1, z) − 1] is the generating function for walks with only the two
vertices of degree 1 in x3 = 0 (partially directed loops). This gives

Q(x, z) = 1

1 − 2xz − 2x2zL(z)
. (33)

Then W is given by the equation

W (x, y, z) = G(x, z) + yzQ(x, z)W (1, y, z), (34)

T

1,4

3,5

1,2

1

3

0,8

0,6

2,5

0,4

0,2

2
0

1,510,50

Fig. 12 Force–temperature phase diagram for partially directed walks in three dimensions (solid black
curve). The thinner bottom curve refers to the phase diagram for the Motzkin path model. The dotted line
corresponds to the low T approximation fc(T ) = 1 + T log 2
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where the first term on the right-hand side comes from walks ending in x3 = 0 and
the second term is from walks leaving the surface to end in a half-space walk (or tail).
By substituting x = 1 we obtain an explicit expression for W (1, y, z) and hence an
expression for W (x, y, z). W is singular when z = z∗ and when the denominator of
W is zero. The denominator factors and we have two possible sets of zeros. The first
one is given by the solution of Eq. 29 and it has been discussed previously. The second
one is given by the solution

1 − 2z − 2yz + z2 + 2z3 + q = 0 (35)

where q is given by (27). By defining z3(y) to be a real positive root of (35), the phase
boundary in the (x, y)-plane is obtained as the solution of the equation z2(x) = z3(y).
With the changes of variable used in the two dimensional case we then obtain the
phase boundary in the (T, f )-plane, shown in Fig. 12. When f = 0 we have the usual
adsorption transition at Tc(0) = 1/ log xc ≈ 1/ log(1.3036).

We note that the force goes through a maximum as the temperature varies so the
phase diagram is reentrant. We return to this point in the next section.

5 Low temperature behaviour and the reentrant transition

One can try to understand the difference between the Dyck-Motzkin models and the
partially directed model by looking at the low temperature behaviour of the various
force–temperature curves. This can be done by constructing an approximate theory
that is either exact in the T → 0 limit or gives a fair approximation in this regime
[9,11,20]. Suppose that T is close to zero. One can think of the polymer under the
influence of a force f with m monomers adsorbed and n − m monomers which have
been pulled out into the bulk. The energy contribution to the free energy are then the
following:

1. An elastic energy − f (n − m) from the part of the polymer extending into the
bulk,

2. an energy term εαm for the part of the polymer adsorbed at the surface. For
ε = −1 the term reduces to −αm.

The entropy contribution is in principle given by two terms: one from the part of the
polymer in the bulk and the other from the part of the polymer at the surface. Since
the part of the polymer in the bulk is under tension the entropy associated with it can
be ignored. The entropic contribution is then entirely due to the part of the polymer at
the surface. If we call log µ the conformational entropy per monomer in the adsorbed
state than the free-energy of the n-mer can be written as

Fn = − f (n − m) − αm − mT log µ (36)

Differentiating with respect to m and setting the derivative equal to zero gives the
critical force fc(T ) as

fc(T ) = α + T log µ. (37)
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If f > fc(T ) then the free energy is dominated by the case m = 0 (desorbed phase)
while if f < fc(T ) the free energy is dominated by the case m = n and the polymer is
completely adsorbed. For Dyck paths α = 1/2 since only half of the m monomers can
be in the adsorbing line while for Motzkin and partially directed walks α = 1 since
there exist configurations with all the m monomers lying at the surface. From Eq. 37
it is clear that the crucial term is the conformational entropy per monomer log µ in the
adsorbed (ground state) phase. For Dyck and Motzkin paths µ = 1 since there is only
one completely adsorbed configuration. Hence fc(0) is 1/2 and 1 for these models
while the limiting derivative d fc(T )/dT is zero (zero slope) in the T → 0 limit. On
the other hand µ = 2 for partially directed walks since there are 2m conformations of
these walks (with m edges) that lies completely in the adsorbing plane. In this case
fc(0) = 1 and, more importantly, d fc(T )/dT = log 2 i.e. the critical force–temper-
ature curve approaches 1 with positive slope ( fc(T ) increases as T increases). Since
for f ≈ 0 the critical curve is a decreasing function of T the above argument suggests
a non monotonic behavior of the phase diagram for partially directed walks.

6 Random copolymer adsorption

The models discussed in the previous sections can be extended to examine the force
required to pull a random copolymer from a surface at which it is adsorbed [18,21].
In its simplest version a random copolymer is a polymer made by a sequence χ of two
types of monomers, A and B that in general interact differently with the surround-
ing environment. This gives rise to interesting equilibrium properties that, in the last
decade, have been the subject of several studies especially for systems which exhibit
phase transitions such as collapse [22–24] or adsorption [25–27]. Moreover, since the
sequence χ of monomers is determined by a stochastic process but, once chosen, it is
then fixed, random copolymers are an interesting example of quenched randomness
(see for instance [28]). In this respect the appropriate free energy of the system is the
quenched average free energy

〈Fn(χ)〉 = 〈n−1 log Zn(χ)〉 (38)

where the angular brackets denote an average over all monomer sequences [28,29]
and Zn(χ) is the partition function of the system for a given monomer sequence χ .
Unfortunately, even for simple models such as Dyck and Motzkin paths it is not pos-
sible to calculate quenched average properties analytically (see for instance [30,31])
and one must rely to resort some approximations [32]. The simplest approximation
would be the annealed approximation when the order of the expectation and of the
logarithm is reversed, but this approximation does not guarantee that even the lower
moments of the distribution of colours are correct. An improved approximation was
suggested some year ago by Morita [33]. This can be regarded as a partial annealing
with a Lagrange multiplier incorporated to ensure that the mean fraction of verti-
ces “coloured” A is fixed at the required value. It is known [18] that this gives a
first order Morita free energy that for Motzkin paths gives the correct asymptotic
slope (i.e. the one expected for the quenched free energy) for the adsorption problem.
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Clearly, fixing the first moment of the colouring distribution in the statistics does not
ensure that higher order correlations are correct but the Morita scheme is flexible
enough to allow further improvements through higher order approximations [32,34].
Here we will restrict ourselves to the first order Morita approximation approach to the
random copolymer adsorption problem subject to a force.

As the underlying model for the walk configurations we consider Motzkin paths that
have the advantage, over Dyck paths, that they can lie entirely over the adsorbing line.
Let us first consider the adsorption problem of a random copolymer. The vertices of a
Motzkin path with n edges are labelled by i = 0, 1, 2 . . . n. The monomer sequence of
the linear random copolymer is described by a sequence of colours χ = χ1, χ2, . . . χn

where χi = 1 if the i th vertex is A and zero if it is B. For a given sequence χ the
energy of a given Motzkin path ω is formally given by

E(ω|χ) =
n∑

i=1

ε�i (ω)χi (39)

where �i (ω) = 1 if the i th vertex of ω is at the line x2 = 0 and zero otherwise. Notice
that in these notations the homopolymer case treated in Sect. 3 is obtained by putting
all the χi equal to 1. We choose to sample the colour sequence by a Bernouilli process
i.e. the colours χi are chosen independently, with A being chosen with probability
p and B with probability 1 − p. In order to apply the Morita approximation to the
adsorbing Motzkin path model it is useful to keep track not only of the number of
visit but also of the number of vertices in the bulk [18,21]. We do that by defining the
generating function F(u, x, z) where u is conjugate to the number of vertices with
x2 > 0, x is conjugate to the number of visits v and z is conjugate to n. A factorization
scheme similar to the one described in Fig. 2 gives

F(u, w, z) = 1 + uwz2 M(uz)F(u, w, z)

1 − wz
(40)

and by inserting the explicit expression (16) for the generating function of Motzkin
paths (with z replaced by uz) we get

F(u, w, z) = 2u

2u − uwz − w + w
√

1 − 2uz − 3u2z2
. (41)

As we said at the beginning of the section, the Morita approximation consists in
performing a partial annealing average (i.e. an average over the colour sequences of
the partition function) where the proportion of A is fixed to be p by the introduction
of a Lagrange multiplier in the partition function, namely

〈Zn(x; L)〉 =
∑

χ

∑
ω∈�n

xv(ω|χ)L [∑i χi −np]
∑

χ 1
(42)

where ω is a Motzkin path in the set �n of Motzkin paths with n edges, and v(ω|χ) is
the number of A vertices in x2 = 0 for walk ω given the colouring χ . By rearranging
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expression (42) we get

〈Zn(x; L)〉 = L−2np
∑

ω∈�n

(
px L2 + 1 − p

)v(ω) (
pL2 + 1 − p

)n−v(ω)

(43)

where v(ω) is the number of visits for the Mozkin path ω. We note that the generating
function F(u, w, z) may be rewritten as

F(u, w, z) =
∑

n≥0

zn
∑

ω∈�n

wv(ω)un−v(ω) (44)

and so by making the following substitutions,

u → pL2 + 1 − p

w → px L2 + 1 − p

z → z/L2p (45)

we obtain the generating function G(x, z, L) corresponding to the partition function
defined in Eq. 43, namely

G(x, z, L) = F(pL2 + 1 − p, px L2 + 1 − p, z/L2p). (46)

The generating function G has two (positive real) singularities. One is a square root
singularity that, for p = 1/2, becomes

z = z1 = 2L

3(L2 + 1)
(47)

and the other, z = z2, comes from a zero of the denominator of G. Note that, unlike
the homopolymer case, the two singularities describing the phase diagram of copoly-
mer adsorption depend on the Lagrange multiplier L i.e. on the first moment of the
colouring distribution. The Morita condition is equivalent to choose L such that

〈
∑

i

χi

〉
= pn (48)

in the n → ∞ limit. This gives an L that in principle depends on x , i.e. on the
temperature of the system. When z1 is dominant, we choose L such that

L
∂(− log z1)

∂L
= 0 (49)

and this implies that L = L1 = 1, and z1 is then 1/3, corresponding to the desorbed
phase. When z2 is dominant the expression found for L , L = L2(x), is quite com-
plicated to be given explicitly. Substituting L2(x) into z2(x, L) gives the boundary of
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convergence as a function of x in the adsorbed phase. The boundary of convergence
has a singular point at x = xc = (1 + 2p)/2p where we have a switch from z1
being dominant to z2 being dominant. This corresponds to the adsorption transition
in the first order Morita approximation. Note that also the annealing approximation
(obtained as a special case of the first order Morita by fixing L = 1 for any value of x)
gives the same adsorption point xc. This is consistent with the results in [35] show-
ing that the Morita approximation at any order does not improve over the annealing
approximation as far as the location of the adsorption transition is concerned.

Next we include a force term following the procedure developed in Sect. 3 where
we called cn(v, h) as the number of n-edge Motzkin paths with v + 1 vertices in
x2 = 0, having their last vertex with x2-coordinate equal to h. Keeping track also of
the number of vertices in the bulk we can define the generating function

H(u, w, y, z) =
∑

v≥0

∑

h≥0

∑

n

bn(v, h)un−vwv yhzn . (50)

A factorization argument similar to (21) gives

H(u, w, y, z) = F(u, w, z)[1 + uyzC(1, y, uz)], (51)

and H can be written as

H(u, w, y, z) = 2u(1 − uz + √
1 − 2uz − 3u2z2

d1d2
(52)

where

d1 = w + uwz − 2u − w
√

1 − 2uz − 3u2z2 (53)

and

d2 = uz − 1 + 2uyz −
√

1 − 2uz − 3u2z2. (54)

Clearly H(1, x, y, z) = C(w, y, z), i.e. the generating function of the homopolymer
model whose phase diagram has been reported in Fig. 11. To determine the critical
temperature–force curve in the Morita approximation we make the following substi-
tutions in the generating function H(u, w, y, z),

u → pL2 + 1 − p,

w → px L2 + 1 − p

z → z/L2p. (55)

We next determine the singularities of H(x, y, z, L). In addition to the square root
singularity there are two poles, one given by d1 = 0 corresponding to the adsorbed
phase and the other, solution of the equation d2 = 0, corresponding to the phase
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Fig. 13 The force–temperature diagram for a Motzkin path model of adsorption of a random copolymer
at an impenetrable surface, in the presence of a force. The calculation is carried out in the Morita approxi-
mation for p = 1/2. The middles solid curve corresponds to the annealed approximation whereas the top
(dotted) curve is for the homopolymer

where the force has caused desorption. The value of L can be determined in each of
these situations (by finding the value of L such that Eq. 48 is satisfied). The condi-
tion of the two singularities being equal gives the critical value of y as a function
of x , yc(x). With the substitutions x = e1/T and y = e f/T we obtain the Morita
approximation of the temperature-force critical curve, f 1st

c (T |p). In Fig. 13 we com-
pare f 1st

c (T |1/2) with the corresponding curves for the annealed, f 0
c (T |1/2), and

the homopolymer cases. The most striking result is that, unlike the homopolymer and
the annealed cases, the first order Morita approximation for temperature–force curve
presents a reentrance. This is true for any value of p < 1 as shown in Fig. 14 for three
values of p. Note that the critical force at T = 0 is p and that the force goes to zero
at T = 1/(log(2p + 1) − log(2p)), which is the location of the adsorption transition
in the absence of an applied force.

The presence of a reentrance in the phase diagram of the Morita approximation
for the copolymer problem can be explained again in terms of the degeneracy of the
ground state (T = 0) of the models [21]. At T = 0, if p < 1, all the A vertices of a
Motzkin path will be in the surface to minimize the energy. On the other hand the B
vertices can be in or out of the surface since they are neutral with respect to the surface.
This gives at least 2(1−p)n configurations of minimal (ground state) energy and the
intensive (reduced) entropy µ is at least (1 − p) log 2. Equation (37) then becomes

fc(T ) = p + T log µ = p + (1 − p)T log 2. (56)
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Fig. 14 The force–temperature diagram in the Morita approximation for p = 1/4 (bottom), p = 1/2
(second from bottom) and p = 3/4 (third from bottom). The top curve is for the homopolymer

and the force–temperature curve will have a slope (at T = 0) at least as large as
(1 − p) log 2. In Fig. 14 it is clear that this slope at T = 0 decreases as p increases,
as expected from the above rough argument. The value of the critical force at T = 0
for the Motzkin path model is p since the energy to be overcome is pn. For the Dyck
path model the corresponding value is p/2 since only alternate vertices can be in the
surface.

7 Discussion

We have shown that directed walk models such as Dyck, Motzkin and partially directed
walks can be successfully implemented on a generating function approach to study
the problem of polymer adsorption in presence of an elongational force. Indeed by
simple combinatorial arguments the analytical expression of the generating functions
of these models can be obtained and, by looking at their singularity structure, it is
possible to determine the form of the phase boundary in the force–temperature plane,
i.e. the temperature dependence of the critical force for desorption. As the temperature
goes to zero, the critical force goes to 1/2 for the Dyck path model and to 1 for the
Motzkin path model. This reflects the difference in the ground state energies of the
two models. When the applied force is zero the adsorption transition is continuous
with crossover exponent equal to 1/2, as found for other directed models of polymer
adsorption [16,19]. If, on the other hand, a positive force is applied the adsorption
transition becomes first order implying that the order of the transition changes when a
force is applied. Since Dyck and Motzkin paths have only a single configuration with
minimal energy, the configurational entropy per monomer in the ground state (T = 0)
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is zero. If one considers instead the partially directed walk model that has a residual
specific entropy at T = 0, a reentrant phase diagram is observed [20]. This reentrance
has been confirmed recently by a numerical investigation of the full adsorbing self-
avoiding walk model in 3D [36] and can be understood by a simple argument valid at
low T where the entropy in the ground state plays a significant role.

The relative simplicity and flexibility of directed walk models allow the extension
of the generating function approach to the problem of a random copolymer adsorp-
tion where a force can cause desorption [21]. The copolymer can be modelled by two
types of monomers (A and B) where the monomers are distributed independently with
the probability that a monomer is A being p. We show that, within the Motzkin path
model, the first order Morita approximation to the quenched problem can be solved
exactly for any value of p. The force-temperatures curves obtained show remarkable
richness. In particular for 0 < p < 1 the critical force is not a monotonic function
of T but presents a reentrance. This is different either from the homopolymer case
or from the annealed approximation (zero order Morita) where the reentrance is not
present and is associated to the degeneracy of the ground state of the model introduced
by the randomness of the monomer sequence. This shows that the first order Morita
approach furnishes a significant improvement over the annealed one in approximat-
ing the quenched problem. A problem closely related to the mechanical desorption
of random copolymer concerns the influence of disorder in the mechanical unzipping
of DNA [37]. In this respect techniques similar to the ones discussed here have been
recently implemented to show that the Morita approximation furnishes a good bound
on the force required to unzip the DNA in the quenched case [38].
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